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Abstract: Generalized matrix functions were �rst introduced in [J. B. Hawkins and A. Ben-Israel, Linear and
Multilinear Algebra, 1(2), 1973, pp. 163–171]. Recently, it has been recognized that these matrix functions arise
in a number of applications, and various numerical methods have been proposed for their computation. The
exploitation of structural properties, when present, can lead to more e�cient and accurate algorithms. The
main goal of this paper is to identify structural properties of matrices which are preserved by generalized
matrix functions. In cases where a given property is not preserved in general, we provide conditions on the
underlying scalar function under which the property of interest will be preserved by the corresponding gen-
eralized matrix function.
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1 Introduction
A generalized matrix function (GMF) is a type of matrix function that is de�ned in terms of the singular value
decomposition (SVD), and that can be applied to rectangular matrices. For many years after their introduc-
tion in [9], there was very little interest in GMFs. Recently, however, it has been recognized that GMFs pro-
vide a framework for formulating and solving various problems arising in data science, ranging from rank-
constrained matrix optimization problems to the analysis of directed networks; see, e.g., [1, 2] and the ref-
erences therein. GMFs also arise naturally in the context of Hamiltonian dynamical systems [7, 8], such as
the wave equation on graphs [5]. This realization has prompted several authors to take a new look at GMFs,
leading to several papers, both theoretical and computational in nature [1, 3, 5, 15].

This paper is aimed at deepening our theoretical understanding of generalized matrix functions, in par-
ticular we are interested in studying thosematrix properties that are invariant under generalizedmatrix func-
tions. In the case of standard matrix functions, advance knowledge of the structural properties of f (A) can
lead to more accurate and e�cient algorithms; for example, when A is a triangular Toeplitz matrix and f is a
function such that f (A) is de�ned, the fact that f (A) is also triangular and Toeplitz can lead to signi�cant sav-
ings when computing it. Similar savings may be expected in the case of generalized matrix functions when
thematrix A has certain structural properties. Some of the properties preserved by standardmatrix functions
are not preserved by generalized matrix functions; conversely, there exist structural properties preserved by
generalized matrix functions which are not preserved by standard matrix functions. It is therefore necessary
to systematically investigate the structural properties that are preserved by GMFs and, more generally, the
interplay between matrix structures and GMFs.
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The remainder of the paper is organized as follows. In section 2we give some basic de�nitions and review
useful properties of GMFs. In section 3 we prove the invariance under GMFs of a number of di�erent matrix
properties, and we derive a few invariance results under some conditions on the scalar function f for other
types of matrix structures. In section 4 we show that GMFs are well behaved with respect to the isomorphism
between complex n × n matrices and their canonical real representation as 2n × 2n real matrices. A few ad-
ditional results are given in section 5, where we consider the invariance of certain matrix cones under GMFs.
Section 6 contains a few concluding remarks and points to possible topics for further research.

2 Preliminaries
Let A ∈ Cm×n. Consider the singular value decomposition

A = UΣVH ,

with U and V unitary and Σ being a diagonal matrix with the singular values of A on the main diagonal
in non-increasing order [13]. Let r be the rank of A. Consider the matrices Ur and Vr formed with the �rst
r columns of U and V, and let Σr be the leading r × r principal submatrix of Σ whose diagonal entries are
σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Then we have the compact SVD:

A = UrΣrVHr .

Let f : R → R be a scalar function such that f (σi) is de�ned for all i = 1, 2, . . . , r. De�ne the generalized
matrix function induced by f as

f♦(A) = Ur f (Σr)VHr , (1)

where

f (Σr) =


f (σ1)

f (σ2)
. . .

f (σr)

 .
Weobserve that f♦(A) reduces to the standardmatrix function f (A) whenever A is Hermitian positive de�nite,
or when A is Hermitian positive semide�nite and f satis�es f (0) = 0. We also note that the rank of f♦(A) can
never exceed r, the rank of A, a property which does not hold, in general, for standard matrix functions.

Another important observation is that we can assume f to be an odd function, since the function f need
only be de�ned for positive real values, and any such function can be completed to an odd function by setting
f (0) = 0 and f (−x) = −f (x) for all x < 0 (note that the values of f outside the interval [−σ1, σ1] are irrelevant).
Setting

A =
[

0 A
AH 0

]
, (2)

we have that any real-valued odd function de�ned on [−σ1, σ1] satis�es

f (A ) =
[

0 f♦(A)
f♦(A)H 0

]
. (3)

Equation (3) is one of several important formulas relating generalized matrix functions with standard ones.
Additional basic properties of generalized matrix functions are given in the following propositions.

Proposition 1. ([3]) Let A ∈ Cm×n be a matrix of rank r. Let f : R → R be a scalar function, and let f♦ :
Cm×n → Cm×n be the induced generalized matrix function. Then

(i) [f♦(A)]H = f♦(AH).
(ii) Let X ∈ Cm×m and Y ∈ Cn×n be two unitary matrices, then f♦(XAY) = X[f♦(A)]Y .
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(iii) If A = A1 ⊕ A2 ⊕ · · ·⊕ Ak, then f♦(A) = f♦(A1)⊕ f♦(A2)⊕ · · ·⊕ f♦(Ak).
(iv) f♦(A) = f (

√
AAH)(

√
AAH)†A = A(

√
AHA)†f (

√
AHA), whereM† is the Moore–Penrose pseudoinverse of

M.

We will also make use of the following simple result.

Proposition 2. Let A ∈ Cm×n be a matrix of rank r. Let f : R → R be a scalar function, and let f♦ : Cm×n →
Cm×n be the induced generalized matrix function. Then

(i) [f♦(A)]T = f♦(AT).
(ii) f♦(A) = f♦(Ā).

Proof. (i) Assume A has the SVD: A = UΣVH . Observing that UT and V̄ are also unitary, AT has the compact
SVD: AT = V̄rΣrUTr , hence f♦(AT) = V̄r f (Σr)UTr = f♦(A)T .

(ii) The proof is similar to (i) .

3 Matrix structures preserved by GMFs
In this section we identify several classes of matrices whose properties are preserved under (certain) general-
ized matrix functions. We deal primarily (but not exclusively) with square matrices, since there are relatively
few types of structured rectangular (non-square)matrices.We emphasize that since f♦(A) cannot (in general)
be represented as a polynomial in A, it is not typically true that associative matrix algebras are closed under
GMFs. This is a major di�erence with respect to standard matrix functions. Nevertheless, we will see that a
number of important matrix classes are indeed closed under GMFs.

Similar to [10, page 314], we present several important matrix structures in Table 1. These matrices cor-
respond to the classical Lie and Jordan matrix algebras over the real and the complex numbers, and can be
described in terms of symmetry, or anti-symmetry, with respect to a prescribed bilinear or sesquilinear form.
In the Table, the following notation is used:

Rn =


1

. . .

1

 , J =
[

0 In
−In 0

]
, Σp,q =

[
Ip 0
0 −Iq

]
with p + q = n,

and

A* :=
{

M−1ATM for bilinear forms,
M−1AHM for sesquilinear forms,

where M is one of the matrices de�ning the above bilinear or sesquilinear forms. We remark that we adhere
here to the terminology used in [10], and that di�erent terms are often found in the literature for some of the
matrix structures discussed below. Our �rst result is the following.

Theorem 3. Let M be one of the classes in Table 1. If A ∈M and f♦(A) is well de�ned, then f♦(A) ∈M .

Proof. It is obvious that Rn, J and Σp,q are unitary, so in each case the matrixM corresponding to the algebra
to which A belongs is unitary. Thus by Propositions 1(ii) and 2 we have

f♦(A*) =
{

M−1f♦(A)TM = f♦(A)* for bilinear forms,
M−1f♦(A)HM = f♦(A)* for sesquilinear forms.

Hence, for the Jordan algebra case, we have f♦(A)* = f♦(A*) = f♦(A), and similarly for the Lie algebra case
we have f♦(A)* = f♦(A*) = f♦(−A) = −f♦(A).
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Table 1: Structured matrices associated with certain bilinear and sesquilinear forms

Space M Jordan Algebra J =
{
A : A* = A

}
Lie Algebra L =

{
A : A* = −A

}
Bilinear forms

Rn I Symmetrics Skew-symmetrics
Cn I Complex symmetrics Complex skew-symmetrics
Rn Σp,q Pseudosymmetrics Pseudoskew-symmetrics
Cn Σp,q Complex pseudo-symmetrics Complex pseudo-skew-symmetrics
Rn Rn Persymmetrics Perskew-symmetrics
R2n J Skew-Hamiltonians Hamiltonians
C2n J Complex J-skew-symmetrics Complex J-symmetrics

Sesquilinear forms
Cn I Hermitians Skew-Hermitians
Cn Σp,q Pseudo-Hermitians Pseudoskew-Hermitians
Cn Rn Perhermitians Skew-perhermitians
C2n J J-skew-Hermitians J-Hermitians

A simple but worth mentioning consequence of this result is the observation that for any matrix A of rank r,
the structure of the left and right singular vectors ui, vi (1 ≤ i ≤ r) alone determines whether or not A belongs
to one of the matrix classes in Table 1. The singular values σ1, . . . , σr play no role, since replacing them with
arbitrary real numbers produces a matrix in the same class.

There are several other matrix classes that are preserved by arbitrary generalized matrix functions. We
recall the de�nition of a centrohermitian (skew-centrohermitian) matrix, not necessarily square [14].

De�nition 4. A ∈ Cm×n is centrohermitian (skew-centrohermitian) if RmARn = Ā (respectively, RmARn =
−Ā).

The next result provides another list of structured matrix classes that are preserved by any well-de�ned gen-
eralized matrix function.

Theorem 5. Let A ∈ Cm×n be a matrix of rank r. Let f : R→ R be a scalar function, and let f♦ : Cm×n → Cm×n

be the induced generalized matrix function, which is assumed to be well de�ned at A.
(i) If A is centrohermitian (skew-centrohermitian), then f♦(A) is also centrohermitian (skew-

centrohermitian).
(ii) If m = n and A is normal, then f♦(A) is also normal.
(iii) If m = n and A is circulant, then f♦(A) is also circulant.
(iv) If A is a block-circulant matrix with circulant blocks, then f♦(A) is also a block-circulant matrix with

circulant blocks. This generalizes (iii).

Proof. (i) First, if A is centrohermitian, then RmARn = Ā. Since Rm and Rn are unitary, by Propositions 1 (ii)
and 2 (ii) we have Rm f♦(A)Rn = f♦(RmARn) = f♦(Ā) = f♦(A).

Second, if A is skew-centrohermitian, then RmARn = −Ā. Hence, Rm f♦(A)Rn = f♦(RmARn) = f♦(−A) =
−f♦(Ā) = −f♦(A).

(ii) Since A is normal, there exists V ∈ Cn×n unitary such that A = VΛVH where Λ is diagonal with
the eigenvalues λi of A on the main diagonal. Assuming that A has rank r and that the eigenvalues of A are
numbered so that |λ1| ≥ |λ2| ≥ · · · ≥ |λr| > |λr+1| = · · · = |λn| = 0, we can write A = VQΣVH where

Q = diag
(
λ1
|λ1|

, . . . , λr|λr|
, 1, . . . , 1

)
and Σ = diag(|λ1|, . . . , |λr|, 0, . . . , 0).
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Noting that Q is unitary, A has the singular value decomposition A = UΣVH with U = VQ. Let A = UrΣrVHr be
the corresponding compact SVD, then

f♦(A) = Ur f (Σr)VH = VDVH

with
D = diag

(
λ1
|λ1|

f (|λ1|), . . . ,
λr
|λr|

f (|λr|), 0, . . . , 0
)
. (4)

Therefore, f♦(A) is normal.
(iii) Recall that circulant matrices are precisely those that are diagonalized by the Discrete Fourier Trans-

form (DFT) matrix

Un = 1√
n


1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2n−2

...
...

...
. . .

...
1 ωn−1 ω2n−2 . . . ω(n−1)2

 ,

where ω = e− 2πi
n ; see [6, Theorems 3.3.2–3.3.3]. Thus, we have

A = UΛUH ,

whereΛ is diagonal and contains the eigenvalues ofA. Arguing as in the proof of (ii), we conclude that f♦(A) =
UDUH where D is given by (4), hence f♦(A) is diagonalized by the DFT matrix and is therefore circulant.

(iv) Let U = Um ⊗ Un, with Um and Un being the DFT matrices of dimension m and n, respectively. Note
that U is unitary. It is known that A ∈ Cmn×mn is a block-circulant matrix withm×m blocks, where each block
is a n × n circulant matrix, if and only if A has the decomposition A = UΛU∗ where Λ is a diagonal matrix [6,
Theorem 5.8.1]. Then using a similar argument as in (iii) we obtain the result.

Remark 6. We should mention that in [9], Hawkins and Ben-Israel adopt a somewhat di�erent de�nition of
generalized matrix function which allows for “complex singular values"; i.e., the (real) singular values σj of A
can bemultiplied by (complex) phase factors eiθj , where θj ∈ [0, 2π). For f♦(A) to be de�ned, the scalar function
f needs to be de�ned at all these possibly complex values. It is clear that with this de�nition of f♦, the results in
of items (ii)-(iv) would be immediate. When using our de�nition of f♦, which only allows for real singular values
and functions f of a real variable, the results are not immediately obvious and need proof.

While normality, as we saw, is always preserved by GMFs, the weaker property of being diagonalizable is not,
generally speaking. As an example, let σ1 > σ2 > 0 and consider the 2 × 2 matrix

A =
[

0 σ1
σ2 0

]
= σ1e1eT2 + σ2e2eT1 .

Note that A is diagonalizable (having two distinct eigenvalues). If f is any function de�ned for x > 0 such that
f (σ1) ≠ 0 and f (σ2) = 0 (or f (σ1) = 0 and f (σ2) ≠ 0), the matrix f♦(A) is not diagonalizable. Note that this
cannot happen with standard matrix functions.

The next result concerns the preservation of zero entries in certain positions by generalized matrix func-
tions.

Theorem 7. Let A ∈ Cm×n and let f♦(A) be de�ned.
(i) If the ith column (row) of A consists of all zeros, then the ith column (row) of f♦(A) also consists of all

zeros.
(ii) If there exist permutation matrices P ∈ Rn×n and Q ∈ Rn×n such that PAQ is block diagonal, then the

same property holds for f♦(A).
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Proof. (i) Without loss of generality, we may assume the last column of A is 0, since f♦(AP) = f♦(A)P for any
permutation matrix P. Write A =

[
Â 0

]
and assume we have an SVD of Â,

Â = ÛΣ̂V̂H .

This induces an SVD of A:

A =
[
Â 0

]
= Û

[
Σ̂ 0

] [V̂H 0
0 1

]
= UΣVH .

Assuming A has rank r, we have that

f♦(A) = Ur f (Σr)VHr

with Ur, Σr and Vr de�ned as usual. Observing that the last row of Vr consists of all zeros, we conclude that
the last column of f♦(A) is also 0.

Similarly, for the case that A has a row consisting of all zeros, we have that AH has a column of all zeros.
Using the fact that f♦(A)H = f♦(AH) we easily obtain the result.

(ii) This is a straightforward consequence of Proposition 1 (ii)-(iii). We emphasize that A need not be
square, and neither do the individual blocks.

For some structuredmatrices, although their structural properties may not be preserved by every generalized
matrix function,we canplace some restrictions on the function f so that f♦(A)has the same structure asA.We
�rst illustrate this onmatrix groups corresponding to the Lie and Jordan algebras in Table 1. Our classi�cation
closely follows [10, page 314]. Here thematrices R, J, Σp,q and A* are de�ned as before. We have the following
simple result.

Theorem 8. Let G be one of thematrix groups in Table 2. If A ∈ G , f is de�ned for x > 0 and satis�es f (x)f ( 1
x ) =

1 for x > 0, then f♦(A) ∈ G .

Proof. Since Rn, J and Σp,q are unitary, so is the matrix M in each case corresponding to the second column
of Table 2. Thus by Proposition 1 and 2 we have

f♦(A*) =
{

M−1f♦(A)TM = f♦(A)* for bilinear forms,
M−1f♦(A)HM = f♦(A)* for sesquilinear forms.

Hence, for A in each of the above matrix groups, we have f♦(A)* = f♦(A*) = f♦(A−1) = Vr f (Σ−1
r )UHr =

Vr f (Σr)−1UHr = f♦(A)−1.

We remark that the condition f (x)f (x−1) = 1 (for all x > 0) is satis�ed in particular by the functions f (x) = xα

and f (x) = −xα with α ∈ R arbitrary. A complete characterization of all (meromorphic) functions satisfying
such condition can be found in [11]. We also note the recent work [4], where the general problem of deter-
mining conditions on f that guarantee the preservation of a given matrix structure by the corresponding f♦

is brie�y mentioned.
We note that in the case of a unitary matrix A we have f♦(A) = f (1)A, therefore f♦(A) = A for any scalar

function f satisfying f (1) = 1. Hence, generalized matrix functions behave trivially on unitary matrices. This
holds more generally for any matrix of the form A = UrVHr where Ur , Vr ∈ Cn×r have orthonormal columns.

The next result concerns preservation of nonnegativity of the entries. Recall that if f is an analytic func-
tion expressed by a Maclaurin series expansion with nonnegative coe�cients and A is a square nonnegative
matrix, then the standard matrix function f (A), if de�ned, is also nonnegative. The corresponding result for
generalized matrix functions of possibly rectangular nonnegative matrices is the �rst part of the following
theorem.

Theorem 9. (i) Let A ∈ Rm×n be nonnegative and let f be the odd part of an analytic function which has the
Maclaurin expansion of the form f (z) =

∑∞
k=0 ckz

k with c2k+1 ≥ 0, assumed to be convergent for |z| < R with
R > ‖A‖2. Then f♦(A) is well-de�ned, and f♦(A) is also nonnegative.
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Table 2:Matrix groups associated with certain bilinear and sesquilinear forms

Space M Automorphism Group G =
{
A : A* = A−1}

Bilinear forms
Rn I Real orthogonals
Cn I Complex orthogonals
Rn Σp,q Pseudo-orthogonals
Cn Σp,q Complex pseudo-orthogonals
Rn Rn Real perplectics
R2n J Real symplectics
C2n J Complex symplectics

Sesquilinear forms
Cn I Unitaries
Cn Σp,q Pseudo-unitaries
Cn Rn Complex perplectics
C2n J Conjugate symplectics

(ii) If A ∈ Rn×n is doubly stochastic, f satis�es the same assumptions as in (i) and in addition f (1) = 1, then
f♦(A) is also doubly stochastic.

Proof. (i) Without loss of generality, we can assume that f is odd and that f (x) =
∑∞

k=0 c2k+1x2k+1, a series
with nonnegative coe�cients. The condition on the radius of convergence of the Maclaurin series guarantees
that f♦(A) is well-de�ned. The result then follows immediately from (3), noting that the matrix A in (2) is
nonnegative. Alternatively, assume we have the compact SVD of A: A = UrΣrVTr , then AAT = UrΣ2

r UTr ≥
0. Therefore (AAT)kA = UrΣ2k+1

r VTr ≥ 0. It follows that f♦(A) = Ur f (Σr)VTr = Ur(
∑∞

k=0 c2k+1Σ2k+1
r )VTr =∑∞

k=0 c2k+1UrΣ2k+1
r VTr ≥ 0.

(ii) First note that f♦(A) is nonnegative by (i). Next, let e be the vector of all 1. Then for a doubly stochastic
matrix we have

Ae = ATe = e.

Hence,
UrΣrVTr e = e and VrΣrUTr e = e.

Left-multiplying by UTr both sides of the �rst equation and by ΣrVTr both sides of the second equation, we get

ΣrVTr e = UTr e and Σ2
r UTr e = ΣrVTr e.

Combining the equations above we have

Σ2
r VTr e = VTr e and Σ2

r UTr e = UTr e.

Note that ATA is also doubly stochastic, hence the largest singular value of A is equal to 1. Let k be its multi-
plicity. Let VTr e =

[
b1 b2 . . . br

]T
, then the �rst of the two equations above becomes



1
. . .

1
σ2
k+1

. . .
σ2
r





b1
...
bk
bk+1
...
br


=



b1
...
bk
bk+1
...
br


.
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Hence, σ2
i bi = bi, for i = k + 1, . . . , r. Because σi < 1, we have bi = 0, for i = k + 1, . . . , r. Therefore,

f♦(A)e = Ur f (Σr)VTr e

= Ur



f (1)
. . .

f (1)
f (σk+1)

. . .
f (σr)





b1
...
bk
0
...
0


= Ur



f (1)b1
...

f (1)bk
0
...
0



= f (1)Ur



b1
...
bk
0
...
0


= f (1)Ae = f (1)e = e.

Hence, f♦(A) is row-stochastic. A similar argument can be used to show that f♦(A) is also column-stochastic
and thus doubly stochastic.

4 GMFs and the complex-to-real isomorphism
In this section we show that GMFs are well-behaved with respect to the canonical isomorphism between the
algebra of n × n complex matrices (over the reals) and the subalgebra of the algebra of real 2n × 2n matrices

consisting of all block matrices of the form
[
B −C
C B

]
where B, C ∈ Rn×n.

Theorem 10. Let A = B + iC ∈ Cn×n (with B and C real) have rank r. Let f : R → R be a scalar function;
without loss of generality, we assume that f (0) = 0 if r < n. Let f♦ : Cn×n → Cn×n be the induced generalized

matrix function. LetΦ : Cn×n → R2n×2n be themappingΦ(A) =
[
B −C
C B

]
. We also denote by f♦ the generalized

matrix function from R2n×2n to R2n×2n induced by f . Then f♦(Φ(A)) is well de�ned and f♦ commutes with Φ:

f♦(Φ(A)) = Φ(f♦(A)).

Proof. We have

A = B + iC

= UΣVH

= (U1 + iU2)Σ(V1 + iV2)H

= (U1 + iU2)Σ(VT1 − iVT2 )

= U1ΣVT1 + U2ΣVT2 + i(U2ΣVT1 − U1ΣVT2 ),

and f♦(A) = U1f (Σ)VT1 + U2f (Σ)VT2 + i(U2f (Σ)VT1 − U1f (Σ)VT2 ). Hence,

Φ(f♦(A)) =
[
U1f (Σ)VT1 + U2f (Σ)VT2 −U2f (Σ)VT1 + U1f (Σ)VT2
U2f (Σ)VT1 − U1f (Σ)VT2 U1f (Σ)VT1 + U2f (Σ)VT2

]
.
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Next, observe that Φ(A) =
[
B −C
C B

]
has the decomposition:

[
B −C
C B

]
=
[
U1 −U2
U2 U1

][
Σ 0
0 Σ

][
V1 −V2
V2 V1

]T
.

Because U is unitary, we have (U1 + iU2)(UT1 − iUT2 ) = I and (UT1 − iUT2 )(U1 + iU2) = I, therefore U1UT1 +
U2UT2 = I and U1UT2 = U2UT1 .

Thus
[
U1 −U2
U2 U1

]
is orthogonal. Similarly,

[
V1 −V2
V2 V1

]
is also orthogonal.

By Proposition 1, parts (ii) and (iii), we have

f♦(Φ(A)) =
[
U1 −U2
U2 U1

][
f♦(Σ) 0

0 f♦(Σ)

][
VT1 VT2
−VT2 VT1

]

=
[
U1 −U2
U2 U1

][
f (Σ) 0

0 f (Σ)

][
VT1 VT2
−VT2 VT1

]

=
[
U1f (Σ)VT1 + U2f (Σ)VT2 −U2f (Σ)VT1 + U1f (Σ)VT2
U2f (Σ)VT1 − U1f (Σ)VT2 U1f (Σ)VT1 + U2f (Σ)VT2

]
.

Therefore, Φ(f♦(A)) = f♦(Φ(A)).

As a consequence, if a class of n ×n complexmatrices A is invariant under a generalizedmatrix function f♦ :
Cn×n → Cn×n, then the corresponding class of 2n × 2n real matrices Φ(A ) is invariant under the generalized
matrix function f♦ : R2n×2n → R2n×2n induced by the same scalar function f ; and conversely.

Theorem 10may be useful in case it is desirable to avoid complex arithmetic in the computation of GMFs
of complex matrices.

5 Invariant matrix cones
In Theorem 9 we stated conditions under which the cone of nonnegative matrices inRm×n is preserved under
GMFs. In this section we consider the invariance of a di�erent type of matrix cone under GMFs.

Let U ∈ Cm×m and V ∈ Cn×n be two �xed unitary matrices. The set SU,V of all m × n complex matrices of
the form

A = UΣVH , Σ = diag(σ1, σ2, . . . , σp) ∈ Rm×n , p = min{m, n},

where the σi are arbitrary real numbers satisfying σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, is a closed convex cone, i.e.,
it is closed under nonnegative linear combinations and is closed in Cm×n under the Euclidean topology. Its
interior is the set of all matrices A ∈ SU,V with rank(A) = p.

It is obvious that if f : R → R is any nonnegative function which is non-increasing for x > 0, then for
any choice of U and V the cone SU,V is invariant under the action of the induced GMF, f♦. If f (x) > 0 for
x > 0, then f♦ maps the interior of the cone to itself. Hence, if matrices in SU,V exhibit a certain structure,
this structure will be preserved by such GMFs.

As an illustration, consider the case where U and V are discrete Fourier transform matrices of order m
and n, respectively. When m = n the set SU,V is just the positive cone of Hermitian positive semide�nite
circulants, and this cone is invariant under any nonnegative GMF; if we restrict our attention to those scalar
functions f such that f (0) = 0, the induced GMF is actually a standard matrix function. But what happens
if we allow m ≠ n? The following result reveals the structure of complex rectangular matrices of the form
A = UΣVH where U = Um and V = Un are DFT matrices of (possibly) di�erent size.
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Theorem 11. Let Um be the m ×m DFT matrix, let Un be the n × n DFT matrix, and let A ∈ SUm ,Un . Then A has
the following structure:

A =
[
a uH

v B

]
, (5)

where a ∈ R, u and v are centrohermitian vectors, and B ∈ C(m−1)×(n−1) is a centrohermitian matrix. In other
terms, ui = un−i , i = 1, . . . , n−1; vj = vm−j , j = 1, . . . ,m−1; btk = bm−t,n−k , 1 ≤ t ≤ m−1, 1 ≤ k ≤ n−1.

Proof. Consider the m × m circulant permutation matrix

Pm =


1

1
1

. . .

1

 .

Because ωp = ωkm−p, we have that

UmPm = 1√
m


1 1 1 . . . 1
1 ωm−1 ωm−2 . . . ω
1 ω2m−2 ω2m−4 . . . ω2

...
...

...
. . .

...
1 ω(m−1)2

ω(m−1)(m−2) . . . ω(m−1)

 = UHm .

Hence, UmPmUm = Im. Similarly, we have UnPnUn = In. Therefore, UmPmUmΣ = ΣUnPnUn. It follows that
PmA = PmUmΣUHn = UHmΣUnPn = UmΣUHn Pn, because DFT matrices are symmetric. Thus, we have shown
that PmA = APn.

Partition A into
[
a uH

v B

]
, Pm into

[
1 0
0 P̂m−1

]
, and Pn into

[
1 0
0 P̂n−1

]
. Then

[
1 0
0 P̂m−1

][
a uH

v B

]
=
[
a uH

v B

][
1 0
0 P̂n−1

]

and therefore [
a uH

P̂m−1v P̂m−1B

]
=
[
a uH P̂n−1
v BP̂n−1

]
.

Thus, a is a real number, u and v are centrohermitian vectors, and B is a centrohermitian matrix [14].

As a consequence, any matrix M = f♦(A) with A ∈ SUm ,Un where Um and Un are DFT matrices and f is
nonnegative and nonincreasing for x > 0 has the same structure (5) as A.

6 Conclusions and open questions
In this paperwehave identi�ed several types ofmatrix properties that are preserved under generalizedmatrix
functions. It is interesting to observe that standard and generalizedmatrix functions behave rather di�erently
from this point of view. There are a few properties that are preserved by both types of matrix function: for in-
stance, being normal or circulant. On the other hand, being triangular or diagonalizable is always preserved
by standard matrix functions, but not (in general) by generalized ones. Conversely, Theorem 3 provides sev-
eral examples of properties that are preservedbygeneralizedmatrix functions but not necessarily by standard
ones: for instance, f (A) is not generally Hamiltonian when A is Hamiltonian, whereas f♦(A) is always such.
We do not claim to have exhausted the list of matrix properties that are preserved by GMFs. Many interesting
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open questions remain. For instance, whenever a certain property is not preserved in general, one may ask
for conditions on the scalar function f under which the property in question is preserved. In this paper we
have seen some instances of this (see Theorems 8-9), but many more such examples are sure to exist.

Finally, although the notion of generalized matrix function applies also to non-square matrices, most of
the properties studied in this paper pertain to squarematrices only. This is likely a consequence of the fact that
squarematrices admit amuch richer spectral theory and are farmore important in applications in other areas
of mathematics and science. Nevertheless, it would be interesting to carry out a more complete investigation
of structural properties of rectangular matrices and their invariance (or lack thereof) under GMFs.
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